Appendix F Glossary

The following symbols and notations are used throughout the EP.

- a_g Maximum ground acceleration, ft/sec²
- C Velocity of pressure waves in water, 4,720 ft/sec
- C_r Velocity of pressure waves in the foundation
- CQC Complete quadratic combination method for combining the modal responses in a response spectrum analysis
- DTS Dynamic tensile strength which accounts for an increase in strength due to the high strain rate loading associated with earthquake ground motion
- E_f Young's modulus of elasticity of foundation rock
- E_s Young's modulus of elasticity of dam concrete
- f_1 Equivalent lateral force on the upstream face of the dam due to the fundamental vibration mode at a y-distance above the foundation
- f_{sc} Equivalent lateral forces acting on dam due to higher vibration modes at a y-distance above the foundation
- f_{r1} Fundamental resonant frequency of dam on flexible foundation rock with impounded water
- f'_{c} Specified compressive strength of RCC, psi
- f'_{t} Tensile strength of RCC based on direct tensile tests
- f_t Tensile stress
- $f_{t(allowable)}$ Allowable tensile stress defining an acceptable response
- F_{st} Hydrostatic force of the forebay acting on the upstream face of the dam

- g Acceleration due to gravity, 32.2 ft/sec²
- H Depth of forebay pool above the foundation
- H_s Height of upstream face of dam
- L_1 Generalized earthquake force coefficient for the empty reservoir condition
- $ilde{L_1}$ Generalized earthquake force coefficient for the loading condition with the reservoir at depth H
- M_1 Generalized mass for the empty reservoir condition
- \tilde{M}_1 Generalized mass for the loading condition with the reservoir at depth H
- MCE Maximum credible earthquake which is the most severe earthquake believed possible at a site
- OBE Operating basis earthquake which is the earthquake with a 50% chance of exceedence during the 100-year life of the dam
- \overline{p} Standard value of the hydrodynamic pressure function associated with the fundamental vibration mode for the full reservoir condition $(H/H_s = 1)$, and at a y-distance above the foundation
- p Hydrodynamic pressure function associated with the fundamental vibration mode for the load condition with the reservoir at depth H, and at a y-distance above the foundation
- \overline{p}_o Standard value of the hydrodynamic pressure function associated with the higher modes for the full reservoir condition ($H/H_s = 1$), and at a y-distance above the foundation
- p_o Hydrodynamic pressure function associated with the higher modes for the loading condition with the reservoir at depth H, and at a y-distance above the foundation
- PGA Peak Ground Acceleration for the OBE or MCE as appropriate

EP 1110-2-12 30 Sep 95

- r_1 Maximum response (usually expressed as a stress at a y-distance above the foundation) due to the fundamental vibration mode
- r_d Maximum dynamic response (usually expressed as a stress at a y-distance above the foundation)
- r_{max} Maximum total response including both the maximum dynamic response and the summation of the responses due to initial static effects (ususally expressed as a stress at a y-distance above the foundation)
- r_{sc} Maximum response due to the higher vibration modes (usually expressed as a stress at a y-distance above the foundation)
- r_{st} Response due to an initial static effect such as the weight of the dam or the static water pressure which exists just before the earthquake event (usually expressed as a stress at a y-distance above the foundation)

RCC Roller compacted concrete

- *R_f* Period lengthening ratio due to foundation-rock flexibility effects
- R_r Period lenghtening ratio due to hydrodynamic effects
- R_{w} Ratio of the fundamental vibration period of impounded water to the fundamental resonant period of the dam on a rigid foundation with impounded water
- S_a Ordinate of acceleration from the design response spectrum normalized to a maximum ground acceleration of 1 g evaluated at period \tilde{T}_1 and damping ratio $\tilde{\epsilon}_1$
- \tilde{S}_a The spectral acceleration obtained by scaling S_a by the peak gound acceleration (PGA) for either the OBE or MCE as appropriate
- SRSS Square root of the sum of the squares method for combining the modal responses or out-of-phase components of the response in a response spectrum analysis
- T_1 Fundamental vibration period of dam on rigid foundation rock with empty reservoir

- $ilde{T}_1$ Fundamental resonant period of dam on flexible foundation rock with impounded water
- T_1^r Fundamental vibration period of impounded water (4H/C)
- \tilde{T}_r Fundamental resonant period of dam on rigid foundation rock with impounded water
- $ilde{T}_f$ Fundamental resonant period of dam on flexible foundation with empty reservoir
- w Unit weight of water
- w_c Unit weight of concrete (usually taken as 0.15 kips/ft³)
- w_s Weight of dam per unit height at a location y-distance above the foundation (base width x w_c)
- y Coordinate along the height of the dam
- α Wave reflection coefficient
- β Percent of critical damping associated with a response spectrum
- ε₁ Damping ratio of dam on rigid foundation rock with empty reservoir
- $\tilde{\epsilon}_1$ Effective damping factor for dam on flexible foundation rock with impounded water
- ε_f Added damping ratio due to foundation-rock flexibility effects
- ε_r Added damping ratio due to hydrodynamic effects
- n_f Constant hysteretic damping factor for the foundation rock
- ρ Mass density of water
- ρ_r Mass density of the foundation rock
- ϕ,Ψ Normalized fundamental vibration mode shape of dam at upstream face
- ω_1 Fundamental frequency of the dam on rigid foundation rock with empty reservoir

- $\omega_{l}^{\ r}$ Fundamental frequency of the impounded water idealized by a fluid domain of constant depth and infinite length
- $\Omega \qquad \text{Significance parameter for water} \\ \text{compressibility}$